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• High quality mortality data available for multiple countries in the HMD

• May require forecasts of mortality for multiple countries simultaneously for modelling

• Insurers operating in multiple jurisdictions need to set assumptions for many populations

• Reasonable to expect that improved forecasts for single countries could be made if all data were utilized to 

build a model

• May be of interest even if mortality is only being forecast for a single country

Rationale
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• Forecast mortality rates = key inputs into demographic forecasting, life insurance and pensions models

• Foundational model for mortality forecasting is the Lee-Carter model (Lee and Carter 1992) (LC model)

Many other approaches; within actuarial literature see Cairns, Blake and Dowd (2006) for an approach (CBD 

model) suited to old-age mortality (model coefficients of logistic model of qx)

• Mortality over time modeled using:

• i.e. (log) mortality = average rate + rate of change . time index

• Relies on latent variables that must be estimated from data and then multiplied

Could use interaction term between the variables Year and Age but this specification would require t.x effects 

to be fit compared to the t+x effects in the Lee-Carter model.

• => use non-linear/PCA regression to estimate the latent terms (Brouhns, Denuit and Vermunt 2002; Currie 2016; Lee 

and Carter 1992)

Lee-Carter Model
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• Time index kt estimated for years within sample => need to extrapolate kt for out-of-sample forecasts 

• Time series models of varying complexity used to forecast kt

• Two-step process – fit model (ax , bx , kt) and extrapolate - common to other mortality models, such as CBD model

• Key judgement in LC model: over what period should the LC model be calibrated so that ax & bx  appropriate for 

forecasting period? 

• Problem 1: If many forecasts are required, e.g. for multiple populations, then a manual process of selecting 

calibration periods is required if using the LC model

• Single population extensions

Cohort effect (Renshaw and Haberman 2006)

Smoothing time series (Currie 2013)

Producing Forecasts
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• What about multiple populations?

• Intuition = multi-population mortality forecasting model should produce more robust forecasts

Common factors (similar socioeconomic circumstances, shared improvements in public health and medical 

technology)

Common trends likely captured with more statistical credibility

• => Li and Lee (2005) recommend even if interest is in single series

• Problem 2: Not intended for large scale mortality forecasting - generally applied on smaller sub-set of data => 

judgment of modeler needed

Hard to fit (complex optimization schemes/less known statistical techniques)

• Which specification is better, when, and why?

Augmented Common Factor (Li and Lee 2005)

Common Age Effect (Kleinow 2015)

Extending the LC Model

8



• Mortality modelling:

• LC paradigm for mortality forecasting for population i:

• Different models produced by choice of q

• q = 1 and parameters estimated for each population => LC model

• q > 1 => multi factor LC model

• estimate 𝒃𝒙
(𝒊)

= 𝒃𝒙 i.e. not depending on population I => CAE model

• q=2 and estimate population-specific and overall time effects => ACF model

Formalizing the LC Paradigm
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• LC model utilizes step functions:

• For a set of categories 𝑷 with 𝒏𝒑 levels, an embedding of dimension 𝒒𝑷 is:

• LC model can be interpreted using embeddings (see Richman and Wüthrich (2019)):

LC and Embeddings
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• Deep Learning = representation learning technique that automatically constructs hierarchies of complex features 

to represent abstract concepts

Features in lower layers composed of simpler features constructed at higher layers => complex concepts can 

be represented automatically 

• Typical example of deep learning is feed-forward neural networks, which are multi-layered machine learning 

models, where each layer learns a new representation of the features.

• The principle: Provide raw data to the network and let it figure out what and how to learn.

• Desiderata for AI by Bengio (2009): “Ability to learn with little human input the low-level, intermediate, and high-

level abstractions that would be useful to represent the kind of complex functions needed for AI tasks.”

Deep Learning
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• Data with temporal structure implies that previous 

observations should influence the current 

observation

• Recurrent network maintains state of hidden 

neurons over time

Past representation useful for current 

prediction i.e. network has a ‘memory’

• Key challenge – difficult to train due to vanishing 

gradients

• Several implementations of the recurrent concept 

which control how network remembers and forgets 

state

Long Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

• RNNs can make predictions at last time step or for 

each input

Recurrent NN – Temporal data

O O1 O2 O3

x = Input vector

S = hidden state (layers)

O = output

Arrows indicate the direction

in which data flows.

x x1 x2 x3

Folded Unfolded

S S1 S2 S3 
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• Prior - features in images are position invariant i.e. can 

recognize at any position within an image

Also applies to audio/speech and text/time series 

data

• Convolutional network is locally connected and shares 

weights => expresses prior of position invariance

Far fewer parameters than FCN

• Each neuron (i.e. feature map) in network derived by 

applying filter to input data 

Weights of filter learned when fitting network

Multiple filters can be applied

• Can also be used for time-series applications

Convolutional NN - Images
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• Lee Carter model = regression model using features derived from data using PCA

CAE + ACF = LC-type regression models with features derived at a regional level

• Perspective 1: Use a neural network to model the regression problem and let it decide on the feature set

LC is a linear model once parameters are known => use a NN to derive non-linear model

CAE/ACF specify the types of interaction between population-level and regional level parameters => use a NN 

to derive more predictive specification

• Perspective 2: use a more general step function formulation to specify the multi-population model

LC uses step functions of single dimension for each parameter:

Use NN to derive multi-dimensional vectors for each parameter using an embedding layer

Extending LC – two perspectives
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Lee-Carter Neural Network
• Multi-population mortality forecasting 

model (Richman and Wüthrich 2018)

• Supervised regression on HMD data 

(inputs = Year, Country, Age; outputs = 

mx)

• 5 layer deep FCN

• Generalizes the LC model in both ways 

mentioned before

• Note that no time-series forecasting is 

done

Year enters the model as a 

numerical variable.

Forecasts made by predicting using 

values for Year beyond the range of 

input data
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• Results of comparing the models 

(LC/ACF/CAE/LCNN)

• Best performing model is deep neural 

network…

• …produces the best out-of-time forecasts 51 

out of 76 times

• For purposes of large scale mortality 

forecasting, deep neural networks dramatically 

outperform traditional single and multi-

population forecasting models

Multi-population results

17



2000 2010
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• Representation = output of last layer (128 

dimensions) with dimension reduced using 

PCA

• Can be interpreted as relativities of mortality 

rates estimated for each period 

• Output shifted and scaled to produce final 

results

• Generalization of Brass Logit Transform 

where base table specified using NN (Brass 

1964)

Features in last layer of network

𝑦𝑥 = 𝑎 + 𝑏 ∗ 𝑧𝑥
𝑅𝑒𝑓

, where: 

𝑦𝑥 = logit of mortality at age x

a,b = regression coefficients

𝑧𝑥
𝑅𝑒𝑓

= logit of reference mortality 18



• Age embeddings extracted from LCNN model

• Five dimensions reduced using PCA

• Age relativities of mortality rates

• In deeper layers of network, combined with 

other inputs to produce representations specific 

to: 

Country

Gender

Time

• First dimension of PCA is shape of lifetable

• Second dimension is shape of child, young and 

older adult mortality relative to middle age and 

oldest age mortality 

Learned embeddings
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• Applied the same network structure to data 

from a reinsurer in Rossouw and Richman 

(2019)

Consists of mortality and morbidity rates 

from 4 contributing companies over ~15 

years

Trained on 5 years of data and forecast 4 

years

• Compared results of NN to several other 

models (LASSO/GBM) using Poisson deviance 

as criterion

• NN beat other models but had bias at portfolio 

level (see Wüthrich (2019))

• Debiased results:

Poisson deviance: 22 836

AvE: 99.7%

Application to Insurance Data
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• Mortality rates have a time-series 

structure, e.g. Swiss Female mortality in 

1990-2001

• Can NNs exploit time-series structure to 

forecast mortality directly?

RNNs seem to be a natural choice due 

to sequential processing

LCNN does not rely on time-series 

structure directly

• Swiss mortality rates forecast using RNNs 

in Richman and Wüthrich (2019)

Models trained on data 1950-1999

Forecasts made for 2000-2016

Models fit for each gender separately

• To reduce volatility of input data, matrices 

of rates at ages x-x+4 fed into networks to 

forecast rates at age x+2

LC go Machine Learning: RNNs
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• NN models flexible enough to incorporate 

extensions easily, e.g., joint modelling of 

both genders

Gender incorporated explicitly using 

dummy-coding and implicitly through 

rates input to the network 

• Results improved versus single gender 

models

LSTM model beats the GRU model.

• Direct forecasting using RNNs leads to 

unstable results, which are much 

improved via model averaging 

(ensembling)

• Ensemble model captures improvements, 

particularly in young adult mortality 

significantly better than LC.

Extending the RNN model

22



• Deep Learning Integrated Lee–Carter 

Model of Nigri, Levantesi, Marino, 

Scognamiglio & Perla, F. (2019)

• Apply SVD to derive 𝒂𝒙, 𝒃𝒙, 𝒌𝒕 of LC model

• Instead of ARIMA, forecast 𝒌𝒕 using RNN

Combining LC + RNNs
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• RNN models still specialized for single population - can this be expanded to the multi-population case? 

• Furthermore, can the excessive volatility of the RNN calibrations be reduced?

• In the LCNN model, we have the following regression function learned by the network:

• Hypothesis:  can neural network models designed for directly processing sequential data outperform more general 

network architectures applied to sequential data?

• i.e. we wish to map directly from observed mortality rates of many populations to a time feature:

• Addressed in Perla, Richman, Scognamiglio and Wüthrich (2020)

Processing Time Series with DL
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• For modelling, work with scaled version of mortality rates:

where  𝒚𝟏 is the maximum of the observed log rates, and 𝒚𝟎 is the minimum.

• For region 𝒓 and gender 𝒈, can extend LC paradigm to:

where:

• 𝒛𝑹(𝒓) is a region embedding and 𝑾𝒙
𝑹 is a region coefficient

• 𝒛𝑮(𝒈) is a gender embedding and 𝑾𝒙
𝑮 is a gender coefficient

• 𝒛𝒇(𝑼𝒕𝟎
𝒊 ) is a representation learned using a neural network with input = 𝑼𝒕𝟎

𝒊 (matrix of past mortality rates) and 𝑾𝒙
𝒇

is 

a trend age adjustment coefficient 

Defining the Model
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Model Structure
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Processing Layer

Country Gender

Feature Layer

Output Layer mx

...

...

...

...

...

...

...

...

...

...

Age: 0-99

Year: 1-10

• Similar to LCNN model…

• … however, time variable replaced with 

outputs of a NN processing layer

• Diagram shows a CNN being used to 

derive the mortality trend

• Can also use an RNN

• CNNs appear to perform better than RNNs

• LCCONV model forecasts mortality rates 

in a single step…

• … no time series forecasting required.

• Forecasts derived by adding single year 

forecasts to matrix of rates, and 

reapplying the model.



• The CNN model (LCCONV) achieves better 

performance versus the LC model on 

75/76 populations in the HMD

• LCCONV beats the LCNN model in an 

extra 8 populations and achieves a 

substantially lower out-of-sample MSE

• Residual plot shows that model is 

substantially better for males, whereas the 

performance is similar for females

• Using RNNs to process the data, instead 

of predicting also leads to good 

performance

Forecast Results – HMD (1)
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• Populations sorted by size – LC model 

error increases with size of population

• Similar results for NN models, however, 

lower than LC model in most instances

• LCCONV lower than LCNN mainly on large 

male populations

Forecast Results – HMD (2)

29



• Does the LCNN model generalize beyond 

the HMD?

• Fit model to the USMD (50 states + DC)

• Beats LC model 101/102 times

• RNN models more competitive on USMD 

than on HMD

• Cluster 1 - includes states located in the south of US 

(Arizona, Florida, New Mexico, Texas) / US states 

geographically distant from the US zone such as Alaska 

and Hawaii. 

• Cluster 2 - groups countries in the southeast zone 

(Louisiana, Georgia, South Carolina, Mississippi and 

Alabama)

• Cluster 3 – central (Colorado, Kansas, Utah and 

Missouri) and the northwest (Washington, Oregon, 

Montana and

• North Dakota)

• Cluster 4- The last cluster groups countries in the 

northeast of US (Pennsylvania, Connecticut, 

Massachusetts, Virginia and West Virginia).

Forecast Results – USMD
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Conclusion
• Deep learning models provide new opportunities for modelling mortality

• Potential gains of moving from traditional specification of models for mortality

• Some models can directly process mortality rates to produce forecasts with increased accuracy over more general 

models…

• …. however finding an optimal model architecture can be challenging

• Future research should address:

reasons for high variability of RNN models applied to forecast mortality rates

uncertainty bounds on predictions
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