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Talk is based on joint work with Jonas Crevecoeur, Roel Verbelen and Gerda Claeskens.
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Claim dynamics

Time

Occurrence Reporting Closure

PaymentsReporting delay

Settlement delay

All claims in portfolio

Compress data

Development period

A
rr
iv
a
l
p
er
io
d

We typically aggregate the data from the time line into a run-off triangle.

Covariates largely ignored!
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This webinar’s mission statement

1. Launch a discussion on individual, granular data for loss reserving, and their
features.

2. Sketch published research on the modeling of IBNR claim counts.

3. Sketch ongoing research on the development of RBNS claims.

4. Provide (data driven) guidance on the choice between aggregate and individual
reserving for a given portfolio.

5. Reflect upon stream of academic research on data analytics for reserving.
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Research on modelling IBNR claim counts



Research focus
IBNR claims in a Lexis diagram setting

Time t

Time since
occurrence claim

The insurance company is not aware (yet) of claims related to past exposures that are not (yet)
reported!
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Research focus
IBNR claims in a Lexis diagram setting

Time t

Time since
occurrence claim

Evaluation date τ

The insurance company is not aware (yet) of claims related to past exposures that are not (yet)
reported!
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Research questions
IBNR claim counts

▸ Research questions with focus on IBNR claim counts:

● How many claims occurred but are not yet reported, because reporting delay is subject to
right truncation?

● When will these IBNR claims be reported?

▸ Pioneering work by Ragnar Norberg (1993, 1999), (basic, first) implementation in Antonio
& Plat (2014), new work in Verrall & Wüthrich (2016), all in continuous time!

▸ Recent contributions (a.o.) by Avanzi, Wong & Yang (2017) with a Shot Noise Cox
Process, Badescu, Lin & Tang (2016) with a Hidden Markov Model.
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Case study with liability claims data set
Claim occurrence process
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Observation window: July 1, 1996 to August 31, 2009, MM/DD/YY format, i.e. day is natural time unit.
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Case study with liability claims data set
Reporting process
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Case study with liability claims data set
Reporting delay

Declining pattern in reporting delay + intra-week pattern, depending on the occurrence day of
the week.
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On (semi-)official holidays: drop in number of reported claims compared to daily average.
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Case study with liability claims data set
Total IBNR counts
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The statistical model for IBNR
Thoughts

IBNR RBNS

event structure single event multiple, recurrent events

time horizon usually quick longer (in years)

time granularity in days since occurrence in years since reporting

covariates triangle with individual claim- and
daily occurrences and reportings policy(holder) specific

other fields nowcasting in epidemiology; recurrent events
occurrence of events, with marks
observed with delay
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The statistical model for IBNR
Notations

▸ Nt : the (total) number of claims that occurred on day t.

▸ Nt,s : the number of claims from day t that are reported on day s.

▸ Each claim eventually gets reported, thus Nt = ∑∞s=t Nt,s .

▸ Assumption: the Nt,s are independent and

Nt,s ∼ POI(λt ⋅ pt,s).
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Research contributions

1. Verbelen, R., Antonio, K., Claeskens, G & Crèvecoeur, J. 2019, R&R.

● joint estimation of occurrence process and reporting delay distribution

● use EM to optimize the likelihood in presence of missing data

● regression at (t, s) level.

2. Crèvecoeur, J., Antonio., K. & Verbelen, R. 2019, EJOR.

● time-change strategy, daily reporting exposures

focus on calendar day effects, e.g. national holidays and weekend, reporting at specific delays
(e.g. 14 days, 1 year)

● regression at (t, s) level, investigate different settings via simulation study.
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Time change strategy
The idea pictured!
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fUt(u)du

= FUt(s − t + 1) − FUt(s − t).

pt,s = ∫
s−t+1

s−t
fUt(u)du

= FUt(s − t + 1) − FUt(s − t).

pt,s = FŨ(ϕt(s − t + 1)) − FŨ(ϕt(s − t))

where ϕt(d) =
d

∑
i=1
αt,t+i−1 with αt,s reporting exposure
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Time change strategy
Structuring the reporting exposures

▸ Use a standard distribution for Ũ (e.g. exponential, lognormal).

▸ Explain the daily reporting exposures as a function of covariates:

αt,s = exp (x
′
t,s ⋅ γ).

▸ Joint estimation of distribution Ũ and regression parameters to structure αt,s .

Use maximum likelihood estimation with the likelihood of the reported claims.
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Case study
IBNR Results - first evaluation (only granular)

When are the claims that are IBNR (on August 31, 2004) reported?
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Case study
IBNR Results - second evaluation
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Case study
IBNR Results - third evaluation, see Hiabu (2017, SAJ) and Mart́ınez-Miranda, Nielsen et al. (2013)
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Wrap-up
IBNR reserving

3 Accurate predictions under weekday and holiday effects.

3 Faster detections of changes in the occurrence/reporting process (cfr. simulation study).

3 Triangle at daily level, incorporate covariates.

7 Longer computation time.

7 More choices (i.e. distributional assumptions, selecting variables) - should be done with
care!
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What else is there - going beyond actuarial science?

Nowcasting the number of new symptomatic cases during infectious disease outbreaks using
constrained P-spline smoothing

van de Kassteele, Eilers & Wallinga, in Epidemiology (2019).

● nowcasting = assessment of the current situation based on imperfect or partial information

● illustration on a large measles outbreak in the Netherlands, May 2013 - March 2014.

A modelling approach for correcting reporting delays in disease surveillance data

Bastos et al., in Statistics in Medicine (2019).
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Research on the development of RBNS claims



Research focus - RBNS

Time
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Development of an RBNS claim
Continuous time
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Development of an RBNS claim
Continuous time
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The statistical model for RBNS
Thoughts

IBNR RBNS

event structure single event multiple, recurrent events

time horizon usually quick longer (in years)

time granularity in days since occurrence in years since reporting

covariates triangle with individual claim- and
daily occurrences and reportings policy(holder) specific

other fields nowcasting in epidemiology, recurrent events
occurrence of events, with marks
observed with delay

K. Antonio, KU Leuven & UvA The development of RBNS claims 27 / 45



The statistical model
RBNS claim development in discrete time

Time

Development period 1

▸ Claim reported▸ Payment: 0

Development period 2

▸ Payment: 950

Development period 3

▸ Payment: 3200▸ Claim closed

May, 2004
Claim reported

March, 2005
Payment: 250

July, 2005
Payment: 700

March, 2006
Payment: 3200

September, 2006
Claim closes

Occurrence

Reporting

Closure

Payments
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The statistical model
RBNS claim development in discrete time

Time
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A hierarchical reserving model for RBNS claims
Layers

▸ Index the individual claims by k and the development periods by j .

▸ Our approach is modular or layered:

● xk denotes the (observed, fixed) claim information available at the end of the first
development period, i.e. the reporting period

e.g. cause of claim, policy(holder) covariates, initial case estimate

● U j
k is the vector with claim k ’s updated information in development period j

depends on portfolio at hand, e.g. U j
k = (C

j
k ,P

j
k ,Y

j
k) with a settlement indicator C j

k , a

payment indicator P j
k and payment size Y j

k .

▸ Need more modular components ⇒ extend U
j
k !
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A hierarchical reserving model for RBNS claims
Hierarchical structure

▸ Update vectors U j
k for claim k are observed from development period 2 to τk :

RObs = {U j
k ∣ k = 1, . . . ,n, j = 2, . . . , τk}.

▸ We introduce a time dynamic hierarchical structure (see Frees & Valdez, 2008, JASA):

L (RObs) =
n

∏
k=1

f (U(2)k , . . . ,U
(τk)
k ∣ xk)

=
n

∏
k=1

τk

∏
j=2

f (U j
k ∣ U

(2)
k , . . . ,U

(j−1)
k ,xk) .

Thus, future development depends on the past.
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A hierarchical reserving model for RBNS claims
Hierarchical structure

▸ As a last step, we introduce a layered hierarchical structure for U j
k :

L (RObs) =
n

∏
k=1

τk

∏
j=2

s

∏
l=1

f (U j
k,l ∣ U

(2)
k , . . . ,U

(j−1)
k ,U j

k,1, . . . ,U
j
k,l−1,xk) ,

with s the number of layers in the update vector.

▸ For example, with U
j
k = (C

j
k ,P

j
k ,Y

j
k) we focus on the three essential building blocks from

Antonio & Plat (2014)!

▸ The framework incorporates static (via xk) as well as dynamic features.
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A hierarchical reserving model for RBNS claims
Three layers U j

k = (C j
k ,P

j
k ,Y

j
k)

● C j
k is one if claim k settles in development period j and zero otherwise

C j
k ∣U(2)k ,...,U

(j−1)
k ,xk

∼ Bernoulli (p (U(2)k , . . . ,U
(j−1)
k ,xk)) .

● P j
k is one if there is a payment for claim k in development period j and zero otherwise

P j
k ∣U(2)

k
,...,U

(j−1)
k

,C j
k
,xk
∼ Bernoulli (q (U(2)k , . . . ,U

(j−1)
k ,C j

k ,xk)) .

● Y j
k is the payment size, given P j

k = 1. The payment size is gamma distributed with mean

E(Y j
k ∣ U

(2)
k , . . . ,U

(j−1)
k ,C j

k ,P
j
k ,xk) = µ(U

(2)
k , . . . ,U

(j−1)
k ,C j

k ,P
j
k ,xk).
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A hierarchical reserving model for RBNS claims
Model calibration

Guidelines for the model calibration:

● you can use your preferred predictive model (e.g. GLM or Gradient Boosting Machine)

● apply k-fold cross validation (to prevent overfitting) and a weighted likelihood

n

∏
k=1

τk

∏
j=2

wj ⋅ f (U j
k,l ∣ U

(2)
k , . . . ,U

(j−1)
k ,U j

k,1, . . . ,U
j
k,l−1,xk) ,

per layer l in the model.

The weights tackle the covariate shift (or imbalance), e.g. more claims with later development
years in lower vs. upper ‘triangle’.
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Bridging aggregate and individual reserving

The choice between an individual and an aggregate reserving model then depends (in a data
driven way) on:

● the covariates included in the predictive model, e.g. for layer l

E(U j
k,l) = α̃ik+rk ,l ⋅ βj ,l ⋅ exp{φ (U2

k , . . . ,U
j−1
k ,U j

k,1, . . . ,U
j
k,l−1,xk)},

with ik + rk the reporting year of claim k .

For layer l , if φ(.) = 0 (i.e. no relevant covariates) summing the individual, claim-specific
updates reduces to a triangle with the multiplicative chain ladder structure (since reporting).
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Connections with the literature (a selection)

Denuit & Trufin (2017, 2018), Wahl et al. (2019), RBNS in Double CL

Reserving by combining multiple runoff triangles for closure, payment and size.

Wüthrich (2018), special issue Risks edited by Taylor (2020)

Machine learning methods (e.g. regression tree, GBM) for the payment and closure indicator.

Larsen (2007)

GLM fitted for each of the components (C ,P and Y ) in the development process.
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Data exploration
Home insurance claims - global events
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Data exploration
Home insurance claims - treemap

Contact

Electricity

Fire

Glass

Hail

Lightning

Other

Storm Theft

Vandalism

Water
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Multiple evaluation dates

K. Antonio, KU Leuven & UvA The development of RBNS claims 40 / 45



Multiple evaluation dates

Percentage Error = 100 ⋅ predicted−actual
actual

.
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Overall performance

Portfolio
hierarchical GLM hierarchical GBM chain ladder
µ(PE) µ(∣PE ∣) µ(PE) µ(∣PE ∣) µ(PE) µ(∣PE ∣)

non-fire claims 0.92 7.32 -1.80 10.23 33.89 51.31

non-fire claims,
-9.76 14.90 -14.28 20.18 -18.10 19.07

exclude extreme weather

fire-claims -20.82 26.44 -16.42 26.50 -28.41 29.76

Average performance is expressed as the mean percentage error and the mean absolute
percentage error.

K. Antonio, KU Leuven & UvA The development of RBNS claims 42 / 45



Take home insights

3 Structure the (highly) scattered literature on analytics for loss reserving.

3 Hybrid strategy, take data-driven position between individual and aggregate.

3 Less is more, unify pricing and reserving methodology (e.g. GLMs, GBMs).

3 Lessons to learn from the machine learning literature.

3 Use multiple evaluation dates, instead of single out-of-time.

3 Use multiple portfolios, no free lunch.
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More information

For more information, please visit:

LRisk website, www.lrisk.be

https://katrienantonio.github.io

Thanks to
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Crèvecoeur, J., Antonio., K. & Verbelen, R. 2019.
Modeling the number of hidden events subject to observation delay
European Journal of Operations Research, working paper online at
https://arxiv.org/abs/1801.02935.
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