Coherent forecasting age distribution of death counts for *multiple* populations

Han Lin Shang Department of Actuarial Studies and Business Analytics Macquarie University

(Joint work with Steven Haberman, Cass Business School)

July 1, 2020 Zoom presentation

Aims	Literature review	Data	CoDa	Bootstrap	CoDa model fitting	Forecast accuracy	Annuity
●0	00000000	0	0000000000000	000	0000		000000000
Abo	out						

1 In human mortality, three functions are studied¹:

 $^{^{1}}$ M-P. Bergeron-Boucher, S. Kjaegaard, J. E. Oeppen, J. W. Vaupel (2019) The impact of the choice of life table statistics when forecasting mortality, **41**, article 43

²Kokoszka, P., Miao, H., Petersen, A. and Shang, H. L. (2019), 'Forecasting of density functions with an application to cross-sectional and intraday returns', *International Journal of Forecasting*, **35**(4), 1304-1317

I In human mortality, three functions are studied¹:

hazard (e.g., central mortality rate)

 $^{^{1}}$ M-P. Bergeron-Boucher, S. Kjaegaard, J. E. Oeppen, J. W. Vaupel (2019) The impact of the choice of life table statistics when forecasting mortality, **41**, article 43

²Kokoszka, P., Miao, H., Petersen, A. and Shang, H. L. (2019), 'Forecasting of density functions with an application to cross-sectional and intraday returns', *International Journal of Forecasting*, **35**(4), 1304-1317

I In human mortality, three functions are studied¹:

- hazard (e.g., central mortality rate)
- survival (e.g., life expectancy)

 $^{^1\}text{M-P.}$ Bergeron-Boucher, S. Kjaegaard, J. E. Oeppen, J. W. Vaupel (2019) The impact of the choice of life table statistics when forecasting mortality, **41**, article 43

²Kokoszka, P., Miao, H., Petersen, A. and Shang, H. L. (2019), 'Forecasting of density functions with an application to cross-sectional and intraday returns', *International Journal of Forecasting*, **35**(4), 1304-1317

I In human mortality, three functions are studied¹:

- hazard (e.g., central mortality rate)
- survival (e.g., life expectancy)
- *life table deaths* (e.g., life table death count)

 $^{^1\}text{M-P.}$ Bergeron-Boucher, S. Kjaegaard, J. E. Oeppen, J. W. Vaupel (2019) The impact of the choice of life table statistics when forecasting mortality, **41**, article 43

²Kokoszka, P., Miao, H., Petersen, A. and Shang, H. L. (2019), 'Forecasting of density functions with an application to cross-sectional and intraday returns', *International Journal of Forecasting*, **35**(4), 1304-1317

In human mortality, three functions are studied¹:

- hazard (e.g., central mortality rate)
- survival (e.g., life expectancy)
- *life table deaths* (e.g., life table death count)

2 Forecasting *central mortality rates* leads to more pessimistic forecasts than using *survival probabilities* & *life table deaths*

 $^{^{1}}$ M-P. Bergeron-Boucher, S. Kjaegaard, J. E. Oeppen, J. W. Vaupel (2019) The impact of the choice of life table statistics when forecasting mortality, **41**, article 43

²Kokoszka, P., Miao, H., Petersen, A. and Shang, H. L. (2019), 'Forecasting of density functions with an application to cross-sectional and intraday returns', *International Journal of Forecasting*, **35**(4), 1304-1317

In human mortality, three functions are studied¹:

- hazard (e.g., central mortality rate)
- survival (e.g., life expectancy)
- *life table deaths* (e.g., life table death count)
- Forecasting central mortality rates leads to more pessimistic forecasts than using survival probabilities & life table deaths

3 Modeling life table deaths, resemblance with probability density function²

 $^{^{1}}$ M-P. Bergeron-Boucher, S. Kjaegaard, J. E. Oeppen, J. W. Vaupel (2019) The impact of the choice of life table statistics when forecasting mortality, **41**, article 43

²Kokoszka, P., Miao, H., Petersen, A. and Shang, H. L. (2019), 'Forecasting of density functions with an application to cross-sectional and intraday returns', *International Journal of Forecasting*, **35**(4), 1304-1317

Aims	Literature review	Data	CoDa	Bootstrap	CoDa model fitting	Forecast accuracy	Annuity
⊙●	00000000	O	0000000000000	000	0000		000000000
Aim	าร						

1 When modeling life table death counts for multiple populations,

- **I** When modeling life table death counts for multiple populations,
 - how to incorporate correlation to improve point & interval forecast accuracy

- When modeling life table death counts for multiple populations,
 - how to incorporate correlation to improve point & interval forecast accuracy
 - how to forecast multiple death counts so that forecasts are non-negative & sum to radix

- When modeling life table death counts for multiple populations,
 - how to incorporate correlation to improve point & interval forecast accuracy
 - how to forecast multiple death counts so that forecasts are non-negative & sum to radix
- 2 Consider a *compositional data analysis* (CoDa) to forecast future life table death counts

- When modeling life table death counts for multiple populations,
 - how to incorporate correlation to improve point & interval forecast accuracy
 - how to forecast multiple death counts so that forecasts are non-negative & sum to radix
- 2 Consider a *compositional data analysis* (CoDa) to forecast future life table death counts
- 3 Improved forecast accuracy of life table death counts is useful

- When modeling life table death counts for multiple populations,
 - how to incorporate correlation to improve point & interval forecast accuracy
 - how to forecast multiple death counts so that forecasts are non-negative & sum to radix
- 2 Consider a *compositional data analysis* (CoDa) to forecast future life table death counts
- Improved forecast accuracy of life table death counts is useful
 to demographers for estimating survival probabilities & life expectancy

- When modeling life table death counts for multiple populations,
 - how to incorporate correlation to improve point & interval forecast accuracy
 - how to forecast multiple death counts so that forecasts are non-negative & sum to radix
- 2 Consider a *compositional data analysis* (CoDa) to forecast future life table death counts
- **3** Improved forecast accuracy of life table death counts is useful
 - \blacksquare to demographers for estimating survival probabilities & life expectancy
 - to actuaries for determining fixed-term annuity prices for various ages & maturities

 Aims
 Literature review
 Data
 CoDa
 Bootstrap
 CoDa model fitting
 Forecast accuracy

 00
 00000000
 0
 000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Australian central mortality rate

1 Many approaches for forecasting age-specific central mortality rate³

³Booth, H. (2006). 'Demographic forecasting: 1980 to 2005 in review', *International Journal of Forecasting*, **22**(3), 547-581

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Australian central mortality rate Solution Solution</

Many approaches for forecasting age-specific central mortality rate³

2 Constrained value: mortality rate $\in [0, 1] \rightarrow \log$ mortality rate $\in (-\infty, 0]$

³Booth, H. (2006). 'Demographic forecasting: 1980 to 2005 in review', *International Journal of Forecasting*, **22**(3), 547-581

Australian life table death count

CoDa

Literature review

0000000

Instead of central mortality rates, model life table death count⁴

Bootstrap

⁴Canudas-Romo, V. (2010). 'Three measures of longevity: Time trends and record values', *Demography*, **47**(2), 299-312

Australian life table death count

CoDa

Literature review

0000000

Instead of central mortality rates, model life table death count⁴

Bootstrap

2 Constrained value: non-negativity & summability

⁴Canudas-Romo, V. (2010). 'Three measures of longevity: Time trends and record values', *Demography*, **47**(2), 299-312

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity coordination of Life table death count

Advantages of life table death count

 Visualize & forecast a redistribution of life table deaths (e.g., deaths at younger ages are shifted towards older ages)

⁵Cheung, S. L. K., Robine, J.-M., Tu, E. J.-C. and Caselli, G. (2005), 'Three dimensions of the survival curve: Horizontalization, verticalization, and longevity extension', *Demography*, **42**(2), 243-258

⁶Vaupel, J. W., Zhang, Z. and van Raalte, A. A. (2011), 'Life expectancy and disparity: An international comparison of life table data', *BMJ Open*, **1**(1), e000128

- Visualize & forecast a redistribution of life table deaths (e.g., deaths at younger ages are shifted towards older ages)
- 2 Life table death counts yield more information on 'central longevity indicators'

⁵Cheung, S. L. K., Robine, J.-M., Tu, E. J.-C. and Caselli, G. (2005), 'Three dimensions of the survival curve: Horizontalization, verticalization, and longevity extension', *Demography*, **42**(2), 243-258

⁶Vaupel, J. W., Zhang, Z. and van Raalte, A. A. (2011), 'Life expectancy and disparity: An international comparison of life table data', *BMJ Open*, **1**(1), e000128

- Visualize & forecast a redistribution of life table deaths (e.g., deaths at younger ages are shifted towards older ages)
- 2 Life table death counts yield more information on 'central longevity indicators'
 - mean, median, mode age at death⁵

⁵Cheung, S. L. K., Robine, J.-M., Tu, E. J.-C. and Caselli, G. (2005), 'Three dimensions of the survival curve: Horizontalization, verticalization, and longevity extension', *Demography*, **42**(2), 243-258

⁶Vaupel, J. W., Zhang, Z. and van Raalte, A. A. (2011), 'Life expectancy and disparity: An international comparison of life table data', *BMJ Open*, **1**(1), e000128

- Visualize & forecast a redistribution of life table deaths (e.g., deaths at younger ages are shifted towards older ages)
- 2 Life table death counts yield more information on 'central longevity indicators'
 - mean, median, mode age at death⁵
 - lifespan variability (e.g., standard deviation or inter-quartile)⁶

⁵Cheung, S. L. K., Robine, J.-M., Tu, E. J.-C. and Caselli, G. (2005), 'Three dimensions of the survival curve: Horizontalization, verticalization, and longevity extension', *Demography*, **42**(2), 243-258

⁶Vaupel, J. W., Zhang, Z. and van Raalte, A. A. (2011), 'Life expectancy and disparity: An international comparison of life table data', *BMJ Open*, **1**(1), e000128

Cohort life table⁷ describes life history of a specific group of individuals, but depends on forecast mortality for those cohorts born more recently (filling gap)

⁷S. Rizzi, S. Kjaergaard, M-P. Bergeron Boucher, C. G. Camarda, R. Lindahl-Jacobsen, J. W. Vaupel (2020) Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model, *International Journal of Forecasting*, in press

⁸Bergeron-Boucher, M.-P., Canudas-Romo, V., Oeppen, J. and Vaupel, J. W. (2017), 'Coherent forecasts of mortality with compositional data analysis', *Demographic Research*, **37**, 527-566

- Cohort life table⁷ describes life history of a specific group of individuals, but depends on forecast mortality for those cohorts born more recently (filling gap)
- 2 Choose to study period life table⁸, representing mortality conditions in a period

⁷S. Rizzi, S. Kjaergaard, M-P. Bergeron Boucher, C. G. Camarda, R. Lindahl-Jacobsen, J. W. Vaupel (2020) Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model, *International Journal of Forecasting*, in press

⁸Bergeron-Boucher, M.-P., Canudas-Romo, V., Oeppen, J. and Vaupel, J. W. (2017), 'Coherent forecasts of mortality with compositional data analysis', *Demographic Research*, **37**, 527-566

I Probability density function is an example of compositional data

⁹'Robust principal component analysis for power transformed compositional data', *Journal* of the American Statistical Association: Theory and Methods, **110**(509), 136-148

¹⁰ A directional mixed effects model for compositional expenditure data', *Journal of the American Statistical Association: Applications and Case Studies*, **112**(517), 24-36

 $^{^{11}{\}rm Coherent}$ forecasting of multiple-decrement life tables: A test using Japanese cause of death data, in 'European Population Conference', Barcelona, Spain

- **I** Probability density function is an example of compositional data
- 2 Scealy et al. (2017)⁹ apply CoDa to study concentration of chemical elements in rock samples

⁹'Robust principal component analysis for power transformed compositional data', *Journal* of the American Statistical Association: Theory and Methods, **110**(509), 136-148

¹⁰ A directional mixed effects model for compositional expenditure data', *Journal of the American Statistical Association: Applications and Case Studies*, **112**(517), 24-36

 $^{^{11}{\}rm Coherent}$ forecasting of multiple-decrement life tables: A test using Japanese cause of death data, in 'European Population Conference', Barcelona, Spain

- **I** Probability density function is an example of compositional data
- Scealy et al. (2017)⁹ apply CoDa to study concentration of chemical elements in rock samples
- Scealy & Welsh (2017)¹⁰ apply CoDa to analyse total weekly expenditure on food & housing costs

⁹'Robust principal component analysis for power transformed compositional data', *Journal* of the American Statistical Association: Theory and Methods, **110**(509), 136-148

¹⁰ A directional mixed effects model for compositional expenditure data', *Journal of the American Statistical Association: Applications and Case Studies*, **112**(517), 24-36

 $^{^{11}{\}rm Coherent}$ forecasting of multiple-decrement life tables: A test using Japanese cause of death data, in 'European Population Conference', Barcelona, Spain

- **I** Probability density function is an example of compositional data
- Scealy et al. (2017)⁹ apply CoDa to study concentration of chemical elements in rock samples
- Scealy & Welsh (2017)¹⁰ apply CoDa to analyse total weekly expenditure on food & housing costs
- In demography, Oeppen (2008)¹¹ & Bergeron-Boucher et al. (2017) apply PCA to forecast life table death counts

⁹'Robust principal component analysis for power transformed compositional data', *Journal* of the American Statistical Association: Theory and Methods, **110**(509), 136-148

¹⁰ A directional mixed effects model for compositional expenditure data', *Journal of the American Statistical Association: Applications and Case Studies*, **112**(517), 24-36

 $^{^{11}{\}rm Coherent}$ forecasting of multiple-decrement life tables: A test using Japanese cause of death data, in 'European Population Conference', Barcelona, Spain

$$S^{I} = \left\{ [f_{t}(u_{1}), \dots, f_{t}(u_{I})]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

$$S^{I} = \left\{ \left[f_{t}(u_{1}), \dots, f_{t}(u_{I}) \right]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

 \blacksquare S denotes a simplex

$$S^{I} = \left\{ \left[f_{t}(u_{1}), \dots, f_{t}(u_{I}) \right]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

S denotes a simplex
c is a fixed constant

$$S^{I} = \left\{ \left[f_{t}(u_{1}), \dots, f_{t}(u_{I}) \right]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

- $\blacksquare~S$ denotes a simplex
- c is a fixed constant
- \top denotes vector transpose

$$S^{I} = \left\{ \left[f_{t}(u_{1}), \dots, f_{t}(u_{I}) \right]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

- S denotes a simplex
- c is a fixed constant
- $^{\top}$ denotes vector transpose
- simplex space is I 1 dimensional subset of real-valued space R^{I}

$$S^{I} = \left\{ \left[f_{t}(u_{1}), \dots, f_{t}(u_{I}) \right]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

- S denotes a simplex
- c is a fixed constant
- $^{\top}$ denotes vector transpose
- simplex space is I 1 dimensional subset of real-valued space R^{I}
- 2 Compositional data set typically equal to

$$S^{I} = \left\{ \left[f_{t}(u_{1}), \dots, f_{t}(u_{I}) \right]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

- $\blacksquare~S$ denotes a simplex
- c is a fixed constant
- $^{\top}$ denotes vector transpose
- simplex space is I 1 dimensional subset of real-valued space R^{I}
- 2 Compositional data set typically equal to
 - 1 (portions)

$$S^{I} = \left\{ \left[f_{t}(u_{1}), \dots, f_{t}(u_{I}) \right]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

- $\blacksquare~S$ denotes a simplex
- c is a fixed constant
- $^{\top}$ denotes vector transpose
- simplex space is I-1 dimensional subset of real-valued space R^{I}
- Compositional data set typically equal to
 - 1 (portions)
 - 100 (percentage)

Between two constraints, space of compositional data is a simplex

$$S^{I} = \left\{ \left[f_{t}(u_{1}), \dots, f_{t}(u_{I}) \right]^{\top}, \quad 0 \le f_{t}(u_{i}) \le c, \quad \sum_{i=1}^{I} f_{t}(u_{i}) = c \right\},\$$

- $\blacksquare~S$ denotes a simplex
- c is a fixed constant
- $^{\top}$ denotes vector transpose
- simplex space is I 1 dimensional subset of real-valued space R^{I}
- 2 Compositional data set typically equal to
 - 1 (portions)
 - 100 (percentage)
 - 10^6 for parts per million (ppm)

1 Standard approach involves using a transformation (e.g., centred log-ratio) of raw data to remove constraints

- Standard approach involves using a transformation (e.g., centred log-ratio) of raw data to remove constraints
- 2 Apply standard statistical techniques to transformed data in an unconstrained space

Aims 00	Literature review	Data 0	CoDa 0000000000000	Bootstrap 000	CoDa model fitting 0000	Forecast accuracy	Annuity 000000000
Cor	tribution	5					

1 Links multiple-population forecasting with CoDa

- Links multiple-population forecasting with CoDa
- **2** Forecasts of life table death counts \longrightarrow survival probabilities \longrightarrow fixed-term annuity prices

- Links multiple-population forecasting with CoDa
- ${\rm 2\!\!2}$ Forecasts of life table death counts \longrightarrow survival probabilities \longrightarrow fixed-term annuity prices
- **3** Propose a non-parametric bootstrap for constructing prediction intervals for future life table death counts

Consider Australian age- and sex-specific life table death counts from 1921 to 2016, obtained from HMD

 $^{^{12}\}mathrm{a}$ population experiencing 100,000 births annually

- Consider Australian age- and sex-specific life table death counts from 1921 to 2016, obtained from HMD
- **2** Life table radix¹² is fixed at 100,000 at age 0 for each year

 $^{^{12}\}mathrm{a}$ population experiencing 100,000 births annually

- Consider Australian age- and sex-specific life table death counts from 1921 to 2016, obtained from HMD
- Life table radix¹² is fixed at 100,000 at age 0 for each year
- 3 For life table death counts, there are 111 ages, age 0, 1, ..., 109, 110+

¹²a population experiencing 100,000 births annually

- Consider Australian age- and sex-specific life table death counts from 1921 to 2016, obtained from HMD
- Life table radix¹² is fixed at 100,000 at age 0 for each year
- For life table death counts, there are 111 ages, age 0, 1, ..., 109, 110+
- 4 Due to rounding, there are zero counts for age 110+ at some years

 $^{^{12}\}mathrm{a}$ population experiencing 100,000 births annually

- Consider Australian age- and sex-specific life table death counts from 1921 to 2016, obtained from HMD
- Life table radix¹² is fixed at 100,000 at age 0 for each year
- For life table death counts, there are 111 ages, age 0, 1, ..., 109, 110+
- 4 Due to rounding, there are zero counts for age 110+ at some years
- 5 Prefer to use probability of dying & radix to recalculate estimated death counts (up to 6 decimal places)

¹²a population experiencing 100,000 births annually

1 Compute *geometric mean* function

$$\alpha_n^j(u) = \exp\left\{\frac{1}{n}\sum_{t=1}^n \ln[f_t^j(u)]\right\}, \qquad j = 1, \dots, J,$$

where J=2 representing female & male, $\ln(\cdot)$:= natural log

1 Compute *geometric mean* function

$$\alpha_n^j(u) = \exp\left\{\frac{1}{n}\sum_{t=1}^n \ln[f_t^j(u)]\right\}, \qquad j = 1, \dots, J,$$

where J=2 representing female & male, $\ln(\cdot):=$ natural log

2 Treat age as a continuum $u \in [0, 110]$ although age is observed at discrete points

Aims Literature review October October

1 Compute *geometric mean* function

$$\alpha_n^j(u) = \exp\left\{\frac{1}{n}\sum_{t=1}^n \ln[f_t^j(u)]\right\}, \qquad j = 1, \dots, J,$$

where J=2 representing female & male, $\ln(\cdot)$:= natural log

 $\sp{2}$ Treat age as a continuum $u \in [0,110]$ although age is observed at discrete points

3 Set

$$s_t^j(u) = \frac{f_t^j(u) / \alpha_n^j(u)}{\int_{u=0}^{110} f_t^j(u) / \alpha_n^j(u) du}$$

Aims Literature review October October

1 Compute *geometric mean* function

$$\alpha_n^j(u) = \exp\left\{\frac{1}{n}\sum_{t=1}^n \ln[f_t^j(u)]\right\}, \qquad j = 1, \dots, J,$$

where J=2 representing female & male, $\ln(\cdot)$:= natural log

2 Treat age as a continuum $u \in [0, 110]$ although age is observed at discrete points

3 Set

$$s_t^j(u) = \frac{f_t^j(u) / \alpha_n^j(u)}{\int_{u=0}^{110} f_t^j(u) / \alpha_n^j(u) du}$$

 Geometric mean standardises ranges so that no range dominates weighting

1 Apply centred log-ratio transformation

$$\beta_t^j(u) = \ln\left(\frac{s_t^j(u)}{g_t^j}\right),$$

where g_t^j is geometric mean

$$g_t^j = \exp\left\{\int_{u=0}^{110} \ln\left[s_t^j(u)\right] du\right\}$$

Apply centred log-ratio transformation

$$\beta_t^j(u) = \ln\left(\frac{s_t^j(u)}{g_t^j}\right),$$

where g_t^j is geometric mean

$$g_t^j = \exp\left\{\int_{u=0}^{110} \ln\left[s_t^j(u)\right] du\right\}$$

2 Log-ratio transformation removes constraints on $f_t^j(u)$

Apply centred log-ratio transformation

$$\beta_t^j(u) = \ln\left(\frac{s_t^j(u)}{g_t^j}\right),$$

where g_t^j is geometric mean

$$g_t^j = \exp\left\{\int_{u=0}^{110} \ln\left[s_t^j(u)\right] du\right\}$$

2 Log-ratio transformation removes constraints on $f_t^j(u)$ centering \rightarrow portion (ensure summability)

Apply centred log-ratio transformation

$$\beta_t^j(u) = \ln\left(\frac{s_t^j(u)}{g_t^j}\right),$$

where g_t^j is geometric mean

$$g_t^j = \exp\left\{\int_{u=0}^{110} \ln\left[s_t^j(u)\right] du\right\}$$

2 Log-ratio transformation removes constraints on $f_t^j(u)$

- centering \rightarrow *portion* (ensure summability)
- logarithm removes non-negativity constraint

Aims Literature review Oata CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity coordocococo Univariate functional principal component decomposition

Applying functional principal component analysis to $\beta^j(u) = \{\beta_1^j(u), \dots, \beta_n^j(u)\},\$

$$\begin{split} \beta_t^j(u) &= \sum_{\ell=1}^n \widehat{\gamma}_{t,\ell}^j \widehat{\phi}_{\ell}^j(u) \qquad \text{(dimension reduction)} \\ &= \sum_{\ell=1}^{L_j} \widehat{\gamma}_{t,\ell}^j \widehat{\phi}_{\ell}^j(u) + \widehat{\omega}_t^j(u), \end{split}$$

•
$$[\hat{\phi}_1^j(u), \dots, \hat{\phi}_{L_j}^j(u)]$$
 are first L_j estimated FPCs
• $(\hat{\gamma}_{t,1}^j, \dots, \hat{\gamma}_{t,L_j}^j)$ are PC scores at year t

- L_j is number of retained components for j^{th} population
- $\widehat{\omega}_t^j(u)$:= model residual function for j^{th} population at age u & year t

1 Determine L_j by eigenvalue ratio (ER) and growth ratio (GR) estimators¹³

 $^{^{13}}$ Ahn, S. C. and Horenstein, A. R. (2013), 'Eigenvalue ratio test for the number of factors', *Econometrica*, **81**(3), 1203-1227

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity coordocococo Selection of retained number of components

- Determine L_j by eigenvalue ratio (ER) and growth ratio (GR) estimators¹³
- 2 ER estimator is obtained by maximising ratio of two adjacent eigenvalues of $Var(\beta^j)$ arranged in descending order

$$\mathsf{ER}(\ell) = rac{ ilde{\mu}_\ell}{ ilde{\mu}_{\ell+1}}, \qquad \ell = 1, 2, \dots, \mathsf{Lmax}$$

where $\boldsymbol{\beta}^{j}$ is a discretized matrix

¹³Ahn, S. C. and Horenstein, A. R. (2013), 'Eigenvalue ratio test for the number of factors', *Econometrica*, **81**(3), 1203-1227

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity 00000000000 Selection of retained number of components

- Determine L_j by eigenvalue ratio (ER) and growth ratio (GR) estimators¹³
- **2** ER estimator is obtained by maximising ratio of two adjacent eigenvalues of $Var(\beta^j)$ arranged in descending order

$$\mathsf{ER}(\ell) = rac{ ilde{\mu}_\ell}{ ilde{\mu}_{\ell+1}}, \qquad \ell = 1, 2, \dots, \mathsf{Lmax}$$

where β^{j} is a discretized matrix 3 GR estimator is

$$\tilde{\mu}_{\ell}^{*} = \frac{\tilde{\mu}_{\ell}}{\sum_{s=\ell+1}^{\min(n,I)} \tilde{\mu}_{s}}$$
$$\mathsf{GR}(\ell) = \frac{\ln(1+\tilde{\mu}_{\ell}^{*})}{\ln(1+\tilde{\mu}_{\ell+1}^{*})}$$

¹³Ahn, S. C. and Horenstein, A. R. (2013), 'Eigenvalue ratio test for the number of factors', *Econometrica*, **81**(3), 1203-1227

Selection of number of components

1 Optimal number L_j is

$$L_j = \max\left\{\max_{1 \le \ell \le \mathsf{Lmax}} \mathsf{ER}(\ell), \max_{1 \le \ell \le \mathsf{Lmax}} \mathsf{GR}(\ell)\right\}$$

Selection of number of components

1 Optimal number L_j is

2

$$\begin{split} L_j &= \max\left\{ \max_{1 \leq \ell \leq \mathsf{Lmax}} \mathsf{ER}(\ell), \max_{1 \leq \ell \leq \mathsf{Lmax}} \mathsf{GR}(\ell) \right\} \\ \mathsf{Lmax} &= \#\left\{ \ell \geq 1 | \tilde{\mu}_\ell \geq \sum_{\ell=1}^{\min(n,I)} \tilde{\mu}_\ell / \min(n,I) \right\} \end{split}$$

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity

Multivariate FPC decomposition

1 Stack $\beta_t(u) = \left[\beta_t^1(u), \beta_t^2(u)\right]$ into a long vector of functional time series

- Stack $\pmb{\beta}_t(u) = \left[\beta_t^1(u), \beta_t^2(u)\right]$ into a long vector of functional time series
- 2 Computationally, as ${\cal B}^j(u)$ is a matrix of $n\times I,\, {\cal B}(u)$ is a matrix of $n\times (2I)$

Multivariate FPC decomposition

Apply FPCA to $\boldsymbol{\beta}(u)$,

$$\begin{split} \beta_t^j(u) &= \sum_{\ell=1}^n \widehat{\gamma}_{t,\ell}^j \widehat{\phi}_\ell^j(u) \qquad \qquad \text{(dimension reduction)} \\ &\approx \sum_{\ell=1}^L \widehat{\gamma}_{t,\ell}^j \widehat{\phi}_\ell^j(u), \end{split}$$

• $\left[\widehat{\phi}_{1}^{j}(u), \ldots, \widehat{\phi}_{L}^{j}(u)\right] := \text{first } L \text{ estimated FPCs extracted from variance of stacked functional time series}$

- $(\widehat{\gamma}^j_{\ell,1},\ldots,\widehat{\gamma}^j_{\ell,L})$ are PC scores for j^{th} population
- Determine a common number of components, *L*, using ER tests

1 Model $\beta_t^j(u)$ via multilevel FPCA¹⁴

¹⁴Shang, H. L. (2016) Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method, *Annals of Applied Statistics*, **10**(3), 1639-1672

- **1** Model $\beta_t^j(u)$ via multilevel FPCA¹⁴
- 2 Seek to find common pattern among populations & population-specific pattern

¹⁴Shang, H. L. (2016) Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method, *Annals of Applied Statistics*, **10**(3), 1639-1672

- **1** Model $\beta_t^j(u)$ via multilevel FPCA¹⁴
- Seek to find common pattern among populations & population-specific pattern
- 3 Multilevel FPC regression is

$$\beta_t^j(u) = U_t(u) + R_t^j(u) + e_t^j(u),$$

¹⁴Shang, H. L. (2016) Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method, *Annals of Applied Statistics*, **10**(3), 1639-1672

- **1** Model $\beta_t^j(u)$ via multilevel FPCA¹⁴
- Seek to find common pattern among populations & population-specific pattern
- 3 Multilevel FPC regression is

$$\beta_t^j(u) = U_t(u) + R_t^j(u) + e_t^j(u),$$

• $U_t(u)$:= a common trend

¹⁴Shang, H. L. (2016) Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method, *Annals of Applied Statistics*, **10**(3), 1639-1672

- **1** Model $\beta_t^j(u)$ via multilevel FPCA¹⁴
- Seek to find common pattern among populations & population-specific pattern
- 3 Multilevel FPC regression is

$$\beta_t^j(u) = U_t(u) + R_t^j(u) + e_t^j(u),$$

¹⁴Shang, H. L. (2016) Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method, *Annals of Applied Statistics*, **10**(3), 1639-1672

- **1** Model $\beta_t^j(u)$ via multilevel FPCA¹⁴
- Seek to find common pattern among populations & population-specific pattern
- 3 Multilevel FPC regression is

$$\beta_t^j(u) = U_t(u) + R_t^j(u) + e_t^j(u),$$

• $U_t(u):=$ a common trend • $R^j(u):=$ a population-specific trend • $e_t^j(u):=$ population-specific error term

¹⁴Shang, H. L. (2016) Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method, *Annals of Applied Statistics*, **10**(3), 1639-1672

1 Common trend $U_t(u)$ can be a simple average of $\beta_t^1(u)$ & $\beta_t^2(u)$

Multilevel FPC decomposition

- Common trend U_t(u) can be a simple average of β¹_t(u) & β²_t(u)
 Common trend & population-specific trend can be modelled via a
- two-stage FPCA

$$U_t(u) = \sum_{k=1}^K \widehat{\gamma}_{t,k} \widehat{\phi}_k(u)$$
$$R_t^j(u) = \sum_{l=1}^L \widehat{\eta}_{t,l}^j \widehat{\psi}_l^j(u),$$
- **I** Common trend $U_t(u)$ can be a simple average of $\beta_t^1(u)$ & $\beta_t^2(u)$
- Common trend & population-specific trend can be modelled via a two-stage FPCA

$$U_t(u) = \sum_{k=1}^K \widehat{\gamma}_{t,k} \widehat{\phi}_k(u)$$
$$R_t^j(u) = \sum_{l=1}^L \widehat{\eta}_{t,l}^j \widehat{\psi}_l^j(u),$$

3 K & L are determined by ER tests, respectively

 Aims
 Literature review
 Data
 CoDa
 Bootstrap
 CoDa model fitting
 Forecast accuracy
 Annuity

 Within-cluster variability
 Variability
 Variability
 Variability
 Variability

1 Let $\lambda_k := k^{\text{th}}$ eigenvalue of common trend

Let λ_k := kth eigenvalue of common trend Let λ^l_l := lth eigenvalue of population-specific trend

- 1 Let $\lambda_k := k^{\text{th}}$ eigenvalue of common trend
- **2** Let $\lambda_l^j := l^{\text{th}}$ eigenvalue of population-specific trend
- 3 A possible measure of within-cluster variability is

$$\frac{\sum_{k=1}^{\infty} \lambda_k}{\sum_{k=1}^{\infty} \lambda_k + \sum_{l=1}^{\infty} \lambda_l^j} = \frac{\int_{\mathcal{I}} \mathsf{Var}[\boldsymbol{R}(u)] du}{\int_{\mathcal{I}} \mathsf{Var}[\boldsymbol{R}(u)] du + \int_{\mathcal{I}} \mathsf{Var}[\boldsymbol{U}^j(u)] du},$$

- 1 Let $\lambda_k := k^{\text{th}}$ eigenvalue of common trend
- **2** Let $\lambda_l^j := l^{\text{th}}$ eigenvalue of population-specific trend
- 3 A possible measure of within-cluster variability is

$$\frac{\sum_{k=1}^{\infty} \lambda_k}{\sum_{k=1}^{\infty} \lambda_k + \sum_{l=1}^{\infty} \lambda_l^j} = \frac{\int_{\mathcal{I}} \mathsf{Var}[\boldsymbol{R}(u)] du}{\int_{\mathcal{I}} \mathsf{Var}[\boldsymbol{R}(u)] du + \int_{\mathcal{I}} \mathsf{Var}[\boldsymbol{U}^j(u)] du},$$

4 When common factor can explain main mode of total variability, value of within-cluster variability is close to 1

PC scores can be obtained via a univariate or multivariate time series forecasting method

- PC scores can be obtained via a univariate or multivariate time series forecasting method
- **2** For modelling presence of *nonstationarity*, consider four univariate time series forecasting methods

- PC scores can be obtained via a univariate or multivariate time series forecasting method
- 2 For modelling presence of *nonstationarity*, consider four univariate time series forecasting methods
- 3 Use a univariate time series forecasting method, obtain h-steps-ahead forecast $\widehat{\gamma}^j_{n+h|n,\ell}$ of ℓ^{th} PC score

- PC scores can be obtained via a univariate or multivariate time series forecasting method
- 2 For modelling presence of *nonstationarity*, consider four univariate time series forecasting methods
- 3 Use a univariate time series forecasting method, obtain h-steps-ahead forecast $\widehat{\gamma}^j_{n+h|n,\ell}$ of $\ell^{\rm th}$ PC score
- 4 Conditioning on estimated PCs & observed data, forecast of $\beta_{n+h}^j(u)$ is

$$\widehat{\beta}_{n+h|n}^{j}(u) = \sum_{\ell=1}^{L_{j}} \widehat{\gamma}_{n+h|n,\ell} \widehat{\phi}_{\ell}^{j}(u)$$

1 Transform back to compositional data, taking inverse centered log-ratio transformation

$$\widehat{s}_{n+h|n}^{j}(u) = \frac{\exp\left[\widehat{\beta}_{n+h|n}^{j}(u)\right]}{\int_{u=0}^{110} \exp\left[\widehat{\beta}_{n+h|n}^{j}(u)\right] du}$$

I Transform back to compositional data, taking inverse centered log-ratio transformation

$$\widehat{s}_{n+h|n}^{j}(u) = \frac{\exp\left[\widehat{\beta}_{n+h|n}^{j}(u)\right]}{\int_{u=0}^{110} \exp\left[\widehat{\beta}_{n+h|n}^{j}(u)\right] du}$$

2 Add back geometric means, to obtain forecasts of density function

$$\widehat{f}_{n+h|n}(u) = \frac{\widehat{s}_{n+h|n}^j(u)\alpha_n^j(u)}{\int_{u=0}^{110}\widehat{s}_{n+h|n}^j(u)\alpha_n^j(u)du}$$

where $\alpha_n^j(u) :=$ geometric mean function

I Transform back to compositional data, taking inverse centered log-ratio transformation

$$\widehat{s}_{n+h|n}^{j}(u) = \frac{\exp\left[\widehat{\beta}_{n+h|n}^{j}(u)\right]}{\int_{u=0}^{110} \exp\left[\widehat{\beta}_{n+h|n}^{j}(u)\right] du}$$

2 Add back geometric means, to obtain forecasts of density function

$$\widehat{f}_{n+h|n}(u) = \frac{\widehat{s}_{n+h|n}^j(u)\alpha_n^j(u)}{\int_{u=0}^{110} \widehat{s}_{n+h|n}^j(u)\alpha_n^j(u)du}$$

where $\alpha_n^j(u) :=$ geometric mean function

3 Multiply by radix (10^5)

 Aims
 Literature review
 Data
 CoDa
 Bootstrap
 CoDa model fitting
 Forecast accuracy
 Annuity

 00
 000000000
 000
 000
 000
 0000
 0000000000
 00000000000

Nonparametric bootstrap

Bootstrap takes into account two sources of uncertainty¹⁵

- model residuals in PC decomposition of unconstrained data
- forecast errors between estimated scores from holdout sample & forecast PC scores

¹⁵R. J. Hyndman and H. L. Shang (2009) Forecasting functional time series (with discussion), *Journal of the Korean Statistical Society*, **38**(3), 199-221

Bootstrap forecast errors of PC scores

1 Using a univariate time series forecasting method, obtain *h*-step-ahead forecasts for PC scores $\{\widehat{\gamma}_{1,\ell}^{j}, \dots, \widehat{\gamma}_{n,\ell}^{j}\}$

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity 00 00000000 <t

Bootstrap forecast errors of PC scores

- Using a univariate time series forecasting method, obtain *h*-step-ahead forecasts for PC scores $\{\widehat{\gamma}_{1,\ell}^{j}, \dots, \widehat{\gamma}_{n,\ell}^{j}\}$
- 2 Let *h*-step-ahead forecast errors be

$$\zeta_{t,h,\ell}^j = \widehat{\gamma}_{t,\ell}^j - \widehat{\gamma}_{t|t-h,\ell}^j, \qquad t = h+1, \dots, n$$

- Using a univariate time series forecasting method, obtain *h*-step-ahead forecasts for PC scores $\{\widehat{\gamma}_{1,\ell}^{j}, \dots, \widehat{\gamma}_{n,\ell}^{j}\}$
- 2 Let *h*-step-ahead forecast errors be

$$\zeta_{t,h,\ell}^j = \widehat{\gamma}_{t,\ell}^j - \widehat{\gamma}_{t|t-h,\ell}^j, \qquad t = h+1, \dots, n$$

3 By sampling with replacement from $\hat{\zeta}_{t,h,\ell}^{j}$, obtain $\hat{\zeta}_{*,h,\ell}^{j,b}$

Bootstrap forecast errors of PC scores

CoDa

Using a univariate time series forecasting method, obtain *h*-step-ahead forecasts for PC scores $\{\widehat{\gamma}_{1,\ell}^{j}, \dots, \widehat{\gamma}_{n,\ell}^{j}\}$

Bootstrap

000

CoDa model fitting

2 Let *h*-step-ahead forecast errors be

Aims

Literature review

$$\zeta_{t,h,\ell}^j = \widehat{\gamma}_{t,\ell}^j - \widehat{\gamma}_{t|t-h,\ell}^j, \qquad t = h+1, \dots, n$$

3 By sampling with replacement from ζ^j_{t,h,ℓ}, obtain ζ^{j,b}_{*,h,ℓ}
4 Obtain bootstrap samples of γ_{n+h,ℓ}:

$$\widehat{\gamma}_{n+h|n,\ell}^{j,b} = \widehat{\gamma}_{n+h|n,\ell} + \widehat{\zeta}_{*,h,\ell}^{j,b}, \qquad b = 1,\dots, 10,000$$

1 When first L_j PCs capture main mode of variation, model residuals should be random noise

- I When first L_j PCs capture main mode of variation, model residuals should be random noise
- 2 Bootstrap model residuals by sampling with replacement from $\{\widehat{\omega}_1^j(u), \dots, \widehat{\omega}_n^j(u)\}$

- I When first L_j PCs capture main mode of variation, model residuals should be random noise
- **2** Bootstrap model residuals by sampling with replacement from $\{\widehat{\omega}_1^j(u), \ldots, \widehat{\omega}_n^j(u)\}$
- **3** Adding two components of variability, obtain B variants for $\beta_{n+h}^{j}(u)$:

$$\widehat{\beta}_{n+h|n}^{j,b}(u) = \sum_{\ell=1}^{L_j} \widehat{\gamma}_{n+h|n,\ell}^{j,b} \widehat{\phi}_{\ell}^j(u) + \widehat{\omega}_{n+h}^{j,b}(u)$$

Aims Literature review Data CoDa Bootstrap colo CoDa model fitting CoDa colo CoDa colo

- I When first L_j PCs capture main mode of variation, model residuals should be random noise
- Bootstrap model residuals by sampling with replacement from $\{\widehat{\omega}_1^j(u), \dots, \widehat{\omega}_n^j(u)\}$
- **B** Adding two components of variability, obtain B variants for $\beta_{n+h}^{j}(u)$:

$$\widehat{\beta}_{n+h|n}^{j,b}(u) = \sum_{\ell=1}^{L_j} \widehat{\gamma}_{n+h|n,\ell}^{j,b} \widehat{\phi}_{\ell}^j(u) + \widehat{\omega}_{n+h}^{j,b}(u)$$

4 Via CoDa back-transformation, obtain bootstrap forecasts of $f_{n+h}^j(u)$ & take quantiles

1 Number of retained components, K & L are determined by ER tests in common & population-specific trends

- I Number of retained components, K & L are determined by ER tests in common & population-specific trends
- 2 K = 1, $L_{\text{female}} = 2$ and $L_{\text{male}} = 3$

- I Number of retained components, K & L are determined by ER tests in common & population-specific trends
- 2 K = 1, $L_{\text{female}} = 2$ and $L_{\text{male}} = 3$
- **3** By computing within-cluster variability, common trend accounts for

- \blacksquare Number of retained components, $K \ \& \ L$ are determined by ER tests in common & population-specific trends
- 2 K = 1, $L_{\text{female}} = 2$ and $L_{\text{male}} = 3$
- By computing within-cluster variability, common trend accounts for
 93.02% of total variation for females

- I Number of retained components, K & L are determined by ER tests in common & population-specific trends
- 2 K = 1, $L_{\text{female}} = 2$ and $L_{\text{male}} = 3$
- 3 By computing within-cluster variability, common trend accounts for
 - 93.02% of total variation for females
 - 91.45% of total variation for males

Aims Literature review Data o CoDa Bootstrap coDa model fitting Forecast accuracy ocoooco Actual & reconstructed life table death counts

Forecast life table death counts

CoDa

CoDa model fitting

Using first 76 observations from 1921 to 1996 in Australian females & males, produce 1- to 20-step-ahead forecasts

- Using first 76 observations from 1921 to 1996 in Australian females & males, produce 1- to 20-step-ahead forecasts
- **2** Via an *expanding window* approach, re-estimate parameters using first 77 observations from 1921 to 1997, produce 1- to 19-step-ahead forecasts

- Using first 76 observations from 1921 to 1996 in Australian females & males, produce 1- to 20-step-ahead forecasts
- Via an expanding window approach, re-estimate parameters using first 77 observations from 1921 to 1997, produce 1- to 19-step-ahead forecasts
- 3 Iterate this process by increasing a year until reaching end of data period in 2016

- Using first 76 observations from 1921 to 1996 in Australian females & males, produce 1- to 20-step-ahead forecasts
- Via an expanding window approach, re-estimate parameters using first 77 observations from 1921 to 1997, produce 1- to 19-step-ahead forecasts
- Iterate this process by increasing a year until reaching end of data period in 2016
- Produces 20 one-step-ahead forecasts, 19 two-step-ahead forecasts,
 ..., one 20-step-ahead forecast

Forecast evaluation setup

- Using first 76 observations from 1921 to 1996 in Australian females & males, produce 1- to 20-step-ahead forecasts
- Via an expanding window approach, re-estimate parameters using first 77 observations from 1921 to 1997, produce 1- to 19-step-ahead forecasts
- Iterate this process by increasing a year until reaching end of data period in 2016
- Produces 20 one-step-ahead forecasts, 19 two-step-ahead forecasts,
 ..., one 20-step-ahead forecast
- 5 Compare these forecasts with holdout samples between 1997 & 2016

Point forecast error criterion

Consider MAPE, it can be defined as

$$\mathsf{MAPE}(h) = \frac{1}{111 \times (21 - h)} \sum_{\xi=h}^{20} \sum_{i=1}^{111} \left| \frac{f_{n+\xi}(u_i) - \hat{f}_{n+\xi|n}(u_i)}{f_{n+\xi}(u_i)} \right| \times 100,$$

• $f_{n+\xi}(u_i) :=$ holdout sample for u_i^{th} age & ξ^{th} forecasting year • $\widehat{f}_{n+\xi|n}(u_i) :=$ point forecasts

Discrete version of Kullback-Leibler divergence

$$\begin{aligned} \mathsf{KLD}(h) = & D_{\mathsf{KL}} \left[f_{n+\xi}(u_i) || \widehat{f}_{n+\xi|n}(u_i) \right] + D_{\mathsf{KL}} \left[\widehat{f}_{n+\xi|n}(u_i) || f_{n+\xi}(u_i) \right] \\ = & \frac{1}{111 \times (21-h)} \sum_{\xi=h}^{20} \sum_{i=1}^{111} f_{n+\xi}(u_i) \cdot \left[\ln f_{n+\xi}(u_i) - \ln \widehat{f}_{n+\xi|n}(u_i) \right] + \\ & \frac{1}{111 \times (21-h)} \sum_{\xi=h}^{20} \sum_{i=1}^{111} \widehat{f}_{n+\xi|n}(u_i) \cdot \left[\ln \widehat{f}_{n+\xi|n}(u_i) - \ln f_{n+\xi}(u_i) \right] \end{aligned}$$

Jensen-Shannon divergence

$$\mathsf{JSD}(h) = \frac{1}{2} D_{\mathsf{KL}} \left[f_{n+\xi}(u_i) || \delta_{n+\xi}(u_i) \right] + \frac{1}{2} D_{\mathsf{KL}} \left[\widehat{f}_{n+\xi|n}(u_i) || \delta_{n+\xi}(u_i) \right]$$

- $\blacksquare \ \delta_{n+\xi}(u_i):=$ a common quantity between $f_{n+\xi}(u_i)$ & $\widehat{f}_{n+\xi|n}(u)$
- Consider simple mean $\delta_{n+\xi}(u_i) = \frac{1}{2} \left[f_{n+\xi}(u_i) + \hat{f}_{n+\xi|n}(u_i) \right]$

• Consider geometric mean $\delta_{n+\xi}(u_i) = \sqrt{f_{n+\xi}(u_i)\widehat{f}_{n+\xi|n}(u_i)}$

A scoring rule for prediction intervals $f_{n+\xi}(u_i)$ is

$$\begin{split} S_{\nu,\xi} \Big[\widehat{f}_{n+\xi}^{\mathsf{lb}}(u_i), \widehat{f}_{n+\xi}^{\mathsf{ub}}(u_i), f_{n+\xi}(u_i) \Big] &= \Big[\widehat{f}_{n+\xi}^{\mathsf{ub}}(u_i) - \widehat{f}_{n+\xi}^{\mathsf{lb}}(u_i) \Big] \\ &+ \frac{2}{\nu} [\widehat{f}_{n+\xi}^{\mathsf{lb}}(u_i) - f_{n+\xi}(u_i)] \mathbbm{1} \{ f_{n+\xi}(u_i) < \widehat{f}_{n+\xi}^{\mathsf{lb}}(u_i) \} \\ &+ \frac{2}{\nu} [f_{n+\xi}(u_i) - \widehat{f}_{n+\xi}^{\mathsf{ub}}(u_i)] \mathbbm{1} \{ f_{n+\xi}(u_i) > \widehat{f}_{n+\xi}^{\mathsf{ub}}(u_i) \} \end{split}$$

- $1{\cdot} := binary indicator function$
- ν := level of significance, customarily $\nu = 0.2$ or 0.05

1 Interval score rewards a *narrow* prediction interval, if and only if true observation *lies within* prediction interval

Aims Literature review Data CoDa Bootstrap CoDa model fitting CoDa coocococo Annuity cocococococo Interval forecast error criterion – interval score

- Interval score rewards a *narrow* prediction interval, if and only if true observation *lies within* prediction interval
- 2 For different ages & years in forecasting period, mean interval score is

$$\overline{S}_{\nu}(h) = \frac{1}{111 \times (21-h)} \sum_{\xi=h}^{20} \sum_{i=1}^{111} S_{\nu,\xi} \left[\widehat{f}_{n+\xi}^{\mathsf{lb}}(u_i), \widehat{f}_{n+\xi}^{\mathsf{ub}}(u_i), f_{n+\xi}(u_i) \right]$$

Aims Literature review Data CoDa Bootstrap CoDa model fitting CoDa coocococo Annuity cocococococo Interval forecast error criterion – interval score

- Interval score rewards a *narrow* prediction interval, if and only if true observation *lies within* prediction interval
- 2 For different ages & years in forecasting period, mean interval score is

$$\overline{S}_{\nu}(h) = \frac{1}{111 \times (21-h)} \sum_{\xi=h}^{20} \sum_{i=1}^{111} S_{\nu,\xi} \left[\widehat{f}_{n+\xi}^{\mathsf{lb}}(u_i), \widehat{f}_{n+\xi}^{\mathsf{ub}}(u_i), f_{n+\xi}(u_i) \right]$$

3 Averaged over all horizons, obtain overall mean interval score

$$\overline{S}_{\nu} = \frac{1}{20} \sum_{h=1}^{20} \overline{S}_{\nu}(h)$$

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity

Point forecast accuracy – Australian female data

Forecasting	Modelling				
method	method	MAPE	KLD	JSD^s	JSD^g
ARIMA	FTS	21.7888	0.0177	0.0044	0.0044
	MFTS	28.5893	0.0064	0.0016	0.0016
	MLFTS	24.3259	0.0214	0.0053	0.0054
ETS	FTS	21.7890	0.0177	0.0044	0.0044
	MFTS	28.9389	0.0069	0.0017	0.0017
	MLFTS	21.5710	0.0165	0.0041	0.0041
RW	FTS	34.8394	0.0487	0.0121	0.0121
	MFTS	32.8397	0.0227	0.0057	0.0057
	MLFTS	37.2417	0.0478	0.0118	0.0119
RWD	FTS	22.8552	0.0217	0.0054	0.0054
	MFTS	20.4531	0.0057	0.0014	0.0014
	MLFTS	22.2698	0.0245	0.0061	0.0061

CoDa with multivariate functional time series & RWD forecasting method

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity

Point forecast accuracy – Australian male data

Forecasting	Modelling		Male			
method	method	MAPE	KLD	JSD^s	JSD^g	
ARIMA	FTS	30.0997	0.0517	0.0128	0.0129	
	MFTS	29.1165	0.0218	0.0054	0.0055	
	MLFTS	23.5167	0.0277	0.0069	0.0069	
ETS	FTS	24.5508	0.0302	0.0075	0.0075	
	MFTS	28.3270	0.0207	0.0051	0.0052	
	MLFTS	16.4944	0.0093	0.0023	0.0023	
RW	FTS	42.6095	0.0787	0.0193	0.0196	
	MFTS	44.4279	0.0664	0.0163	0.0166	
	MLFTS	35.3865	0.0453	0.0111	0.0113	
RWD	FTS	29.9539	0.0565	0.0139	0.0141	
	MFTS	28.7224	0.0440	0.0109	0.0110	
	MLFTS	22.8291	0.0251	0.0062	0.0063	

CoDa with multilevel functional time series & ETS forecasting method

Aims Literature revi	iew Data CoDa 0 0000	Bo	otstrap CoDa model 0 0000	fitting Forecast accur 00000000	racy Annuity 000 0000000
Interval fo	recast acc	uracy			
Forecasting	Modeling	F	emale	Mal	e
method	method	$\overline{S}_{0.2}$	$\overline{S}_{0.05}$	$\overline{S}_{0.2}$	$\overline{S}_{0.05}$
ARIMA	FTS	424.5165	662.1788	989.7989	1643.7430
	MFTS	313.0574	433.4390	644.4068	1026.4499
	MLFTS	444.0410	676.9822	492.2062	736.0020
ETS	FTS	494.4926	875.7863	587.8981	741.4829
	MFTS	354.2009	583.3586	624.9392	908.8275
	MLFTS	516.4761	1015.2346	538.1190	868.0729
RW	FTS	487.1864	633.2024	1248.2391	2499.3450
	MFTS	280.4400	385.3941	1258.4402	3024.3323
	MLFTS	490.3348	657.3637	611.5622	807.2828
RWD	FTS	474.3986	830.2068	580.0019	838.8614
	MFTS	378.0343	696.1440	620.8607	822.4041
	MLFTS	550.7896	1130.3849	595.7285	1103.8458

CoDa with multivariate functional time series & RW forecasting method CoDa with multilevel functional time series & ARIMA forecasting method

Forecast accuracy

Interval score

Aims Literature review Data CoDa Bootstrap CoDa model fitting Ocococococo Ococo Ococ

Lifetime annuities, locked in for life, have been perceived to deliver poor value for money¹⁶

¹⁶Cannon, E. and Tonks, I. (2008), Annuity Markets, Oxford University Press, Oxford

Aims Literature review Data CoDa Bootstrap CoDa model fitting Forecast accuracy Annuity occorrector constration of the second s

- Lifetime annuities, locked in for life, have been perceived to deliver poor value for money¹⁶
- Fixed-term annuities pay a guaranteed level of income for a period of maturity; it provides flexibility in allowing purchaser buy a deferred annuity at a later stage

¹⁶Cannon, E. and Tonks, I. (2008), Annuity Markets, Oxford University Press, Oxford

Figure: For females, use CoDa + MFTS + RWD; For males, use CoDa + MLFTS + ETS

1 Adopt a cohort approach¹⁷ to calculation of survival probabilities 2 τ -year survival probability of a person aged x at t = 0 is

$$_{\tau}p_x = \prod_{\eta=1}^{\tau} p_{x+\eta-1} = \prod_{\eta=1}^{\tau} (1 - q_{x+\eta-1}) = \prod_{\eta=1}^{\tau} (1 - \frac{d_{x+\eta-1}}{l_{x+\eta-1}})$$

■ $d_{x+\eta-1}$:= number of death counts between ages $x + \eta - 1$ & $x + \eta$ ■ $l_{x+\eta-1}$:= number of lives alive at age $x + \eta - 1$

¹⁷Dickson, D. C. M., Hardy, M. R. and Waters, H. R. (2009), Actuarial Mathematics for Life Contingent Risks, Cambridge University Press, Cambridge

$\begin{tabular}{ll} \hline 1 & Annuity price with maturity T year depends on $$$

$\blacksquare Annuity price with maturity T year depends on$

zero-coupon bond price

- \blacksquare Annuity price with maturity T year depends on
 - zero-coupon bond price
 - future mortality

- $\blacksquare Annuity price with maturity T year depends on$
 - zero-coupon bond price
 - future mortality

2 Annuity written for an x-year-old with benefit \$1 dollar per year is

$$a_x^T = \sum_{\tau=1}^T B(0,\tau)_\tau p_x,$$

- $\blacksquare Annuity price with maturity T year depends on$
 - zero-coupon bond price
 - future mortality

2 Annuity written for an x-year-old with benefit \$1 dollar per year is

$$a_x^T = \sum_{\tau=1}^T B(0,\tau)_\tau p_x,$$

• $B(0,\tau) := \tau$ -year bond price

- $\blacksquare Annuity price with maturity T year depends on$
 - zero-coupon bond price
 - future mortality

2 Annuity written for an x-year-old with benefit \$1 dollar per year is

$$a_x^T = \sum_{\tau=1}^T B(0,\tau)_\tau p_x,$$

- $B(0,\tau) := \tau$ -year bond price
- $_{\tau}p_x :=$ survival probability

Aims Literature review Data o CoDa constrant CoDa model fitting Forecast accuracy occose constrant o constrant const

1 Zero-coupon bond¹⁸ is

 $B(0,\tau) = \exp^{-w\tau}$

where \boldsymbol{w} alters for different maturities \boldsymbol{T}

¹⁸A. J. G. Cairns (2004). Interest Rate Models: An Introduction, Princeton University Press, Princeton, New Jersey

1 Zero-coupon bond¹⁸ is

$$B(0,\tau) = \exp^{-w\tau}$$

where \boldsymbol{w} alters for different maturities \boldsymbol{T}

2 Australian government bond yields for various maturities

	T = 5	T = 10	T = 15	T = 20	T = 30			
$Yield\ (w)$	0.480%	1.069%	1.542%	1.794%	1.986%			
Table: Retrieved from https://au.investing.com/rates-bonds/								

¹⁸A. J. G. Cairns (2004). Interest Rate Models: An Introduction, Princeton University Press, Princeton, New Jersey

00 000		000000000		0000		0000000000
Point	forecasts	s of annu	ity prices			
Sex	Age	T = 5	T = 10	T = 15	T = 20	T = 30
Female	60	4.8710	9.2088	12.7712	15.6813	19.5944
	65	4.8467	9.1048	12.5139	15.1371	17.9302
	70	4.8023	8.9198	12.0261	14.1290	15.5642
	75	4.7228	8.5484	11.0908	12.3804	12.7786
	80	4.5333	7.7887	9.4198	9.8924	9.8704
	85	4.1748	6.4772	7.1607	7.2023	NA
	90	3.4966	4.7080	4.8372	4.7995	NA
	95	2.6411	3.0746	3.0607	NA	NA
	100	1.7774	1.8806	NA	NA	NA
	105	1.1648	NA	NA	NA	NA
Male	60	4.8351	9.0754	12.4892	15.2103	18.7021
	65	4.7997	8.9371	12.1689	14.5748	17.0265
	70	4.7457	8.7200	11.6208	13.5148	14.7944
	75	4.6534	8.3061	10.6476	11.8059	12.2007
	80	4.4427	7.5268	9.0348	9.5010	9.5014
	85	4.0964	6.3062	7.0032	7.0693	NA
	90	3.4573	4.7212	4.8913	4.8589	NA
	95	2.7505	3.2745	3.272	NA	NA
	100	1.9278	2.0754	NA	NA	NA
	105	1.3020	NA	NA	NA	NA

Aims 00	Literature review 00000000	Data O	CoDa 0000000000000	Bootstrap CoDa mo	del fitting Forecast a	ccuracy Annuity
Inte	rval fored	casts	of annuit	y prices		
Sex	Age	T = 5	T = 10	T = 15	T = 20	T = 30
Fema	le 60 (4.899	, 4.920)	(9.311, 9.399)	(12.989, 13.204)	(16.048, 16.478)	(20.295, 21.549)
	65 (4.881	4.916)	(9.231, 9.376)	(12.778, 13.137)	(15.570, 16.285)	(18.628, 20.457)
	70 (4.845	, 4.904)́	(9.074, 9.321)	(12.338, 12.948)	(14.599, 15.778)	(16.151, 18.419)
	75 (4.775	, 4.878)	(8.728, 9.164)	(11.408, 12.446)	(12.783, 14.524)	(13.197, 15.563)
	80 (4.590	, 4.787)	(7.948, 8.721)	(9.644, 11.169)	(10.121, 12.178)	(10.093, 12.307)
	85 (4.216	, 4.556)́	(6.553, 7.633)	(7.228, 8.898)	(7.262, 9.106)	ŇÁ
	90 (3.492	, 3.960)́	(4.669, 5.795)	(4.788, 6.136)	(4.752, 6.103)	NA
	95 (2.571	, 3.130)́	(2.971, 3.888)	(2.957, 3.910)	ŇÁ	NA
	100 (1.612	, 2.266)	(1.706, 2.503)	ŇÁ	NA	NA
	105 (0.749	, 2.046)	ŇÁ	NA	NA	NA
		,				
Male	60 (4.861	, 4.929)	(9.147, 9.433)	(12.582, 13.287)	(15.270, 16.649)	(18.440, 22.283)
	65 (4.815	, 4.929)	(8.948, 9.432)	(12.115, 13.282)	(14.366, 16.628)	(16.334, 21.980)
	70 (4.730	, 4.927)	(8.627, 9.426)	(11.343, 13.259)	(12.945, 16.535)	(13.754, 21.079)
	75 (4.602	, 4.925)	(8.054, 9.406)	(10.055, 13.162)	(10.873, 16.164)	(11.012, 19.065)
	80 (4.305	, 4.910)	(7.026, 9.309)	(8.110, 12.759)	(8.327, 15.062)	(8.273, 16.111)
	85 (3.842	, 4.853)	(5.573, 8.930)	(5.942, 11.608)	(5.929, 12.652)	NA
	90 (3.068	, 4.612)	(3.879, 7.878)	(3.926, 9.186)	(3.896, 9.335)	NA
	95 (2.249	, 4.078)	(2.521, 5.908)	(2.503, 6.177)	NÁ	NA
	100 (1.507	, 3.006)	(1.571, 3.641)	NÁ	NA	NA
	105 (0.927	, 2.104)	NÁ	NA	NA	NA

Aims 00	Literature review	Data O	CoDa 0000000000000	Bootstrap 000	CoDa model fitting 0000	Forecast accuracy	Annuity 0000000●0
Fut	ure resear	rch					

1 A robust CoDa¹⁹

¹⁹Filzmoser, P., Hron, K. and Reimann, C. (2009), 'Principal component analysis for compositional data with outliers', *Environmetrics*, **20**(6), 621-632

 $^{^{20}}$ R. J. Hyndman, H. Booth and F. Yasmeen (2013) Coherent mortality forecasting: the product-ratio method with functional time series models, *Demography*, **50**(1), 261-283

 $^{^{21}}$ J. Li (2013) A Poisson common factor model for projecting mortality and life expectancy jointly for females and males, *Population Studies*, **67**(1), 111-126

A robust CoDa¹⁹

Consider other joint modelling techniques, such as product-ratio method²⁰ and Poisson common factor model²¹

¹⁹Filzmoser, P., Hron, K. and Reimann, C. (2009), 'Principal component analysis for compositional data with outliers', *Environmetrics*, **20**(6), 621-632

 $^{^{20}}$ R. J. Hyndman, H. Booth and F. Yasmeen (2013) Coherent mortality forecasting: the product-ratio method with functional time series models, *Demography*, **50**(1), 261-283

 $^{^{21}}$ J. Li (2013) A Poisson common factor model for projecting mortality and life expectancy jointly for females and males, *Population Studies*, **67**(1), 111-126

- A robust CoDa¹⁹
- Consider other joint modelling techniques, such as product-ratio method²⁰ and Poisson common factor model²¹
- 3 Consider other types of annuity prices, such as a deferred annuity

¹⁹Filzmoser, P., Hron, K. and Reimann, C. (2009), 'Principal component analysis for compositional data with outliers', *Environmetrics*, **20**(6), 621-632

 $^{^{20}}$ R. J. Hyndman, H. Booth and F. Yasmeen (2013) Coherent mortality forecasting: the product-ratio method with functional time series models, *Demography*, **50**(1), 261-283

 $^{^{21}}$ J. Li (2013) A Poisson common factor model for projecting mortality and life expectancy jointly for females and males, *Population Studies*, **67**(1), 111-126

- A robust CoDa¹⁹
- Consider other joint modelling techniques, such as product-ratio method²⁰ and Poisson common factor model²¹
- 3 Consider other types of annuity prices, such as a deferred annuity
- 4 Consider cohort life table death counts

¹⁹Filzmoser, P., Hron, K. and Reimann, C. (2009), 'Principal component analysis for compositional data with outliers', *Environmetrics*, **20**(6), 621-632

 $^{^{20}}$ R. J. Hyndman, H. Booth and F. Yasmeen (2013) Coherent mortality forecasting: the product-ratio method with functional time series models, *Demography*, **50**(1), 261-283

 $^{^{21}}$ J. Li (2013) A Poisson common factor model for projecting mortality and life expectancy jointly for females and males, *Population Studies*, **67**(1), 111-126

RG: https://www.researchgate.net/profile/Han_Lin_Shang Email: hanlin.shang@mq.edu.au