Using Bayesian Spatiotemporal Modeling to
 Understand Mortality Rates in the United States

Brian Hartman

Joint Work with Robert Richardson, Chris Groendyke, Zoe Gibbs, McKay Christensen, Michael Shull, and Jared Cummings

Brigham Young University

November 2022

Introduction

- Life varies by region in both measurable and immeasurable ways
- We want to improve existing mortality models by accounting for spatiotemporal trends

The Data

- Characteristics of every death in the United States from 2000-2017
- Used data from the US decennial census and the American Community Surveys from intercensus years for population exposures
- Census estimates are binned by gender and 18 five-year age groups from 0 to 85 years old

The Data

- Used data from the contiguous United States to maintain spatial relationships
- Combined counties with extremely low populations and to account for boundary changes, leading to 3,092 total counties for study
- 22,590,587 Female Deaths
- 22,446,212 Male Deaths

Exploratory Data Analysis

1000 Times the Empirical Death Rate for Females Ages 55-59 in Year 2010

[0.00 to 2.52)
[2.52 to 3.85)
[3.85 to 4.85)
[4.85 to 5.88)
[5.88 to 7.08)
[7.08 to 9.19)
[9.19 to 62.50]

Exploratory Data Analysis

1000 Times the Empirical Death Rate for Females Ages 85+ in 2010

Exploratory Data Analysis

Figure 1: Average mortality rate by gender, age group, and year (for older ages)

Exploratory Data Analysis

Figure 2: Average mortality rate by gender, age group, and year (for younger ages)

The Data

- Considered several demographic and economic statistics as explanatory variables
- We preferred complete data for every county and year
- Used unemployment rate estimates as provided by the US Bureau of Labor Statistics
- We hope to obtain additional explanatory variables in the future

Exploratory Data Analysis

Unemployment Rate by County in 2010

[0.0210 to 0.0604)
[0.0604 to 0.0754)
[0.0754 to 0.0870)
[0.087 to 0.098)
[0.0980 to 0.1101)
[0.1101 to 0.1258)
[0.1258 to 0.2884]

Exploratory Data Analysis

Figure 3: Average unemployment rate, weighted by county population in 2000-2017

Bayesian CAR Models

- Model with a prior such that the every space/time point only depends on direct neighbors and adjacent time points
- Special case of a Markov random field
- Often used to analyze areal data

Bayesian Binomial Hierarchical Model

$$
\begin{gather*}
y_{k t} \sim \operatorname{Binomial}\left(n_{k t}, \theta_{k t}\right) \tag{1}\\
\log \left(\theta_{k t} /\left(1-\theta_{k t}\right)\right)=x_{k t}^{\prime} \boldsymbol{\beta}+\psi_{k t} \tag{2}
\end{gather*}
$$

- $n_{k t}$ is the total population and $\theta_{k t}$ is the probability of death.
- $x_{k t}^{\prime}$ represents the covariate information for the $k^{\text {th }}$ location at time t
- $\boldsymbol{\beta}$ is a vector of coefficients
- $\psi_{k t}$ collects all the spatial and temporal random effects that create the spatio-temporal dependence

Conditional Autoregressive Priors

$$
\begin{align*}
y_{i} \mid y_{(i)} & \sim N\left(\rho \sum_{j=1}^{n} \frac{1}{N_{i}} W_{i j} y_{j}, \tau^{2}\right) \tag{3}\\
Y & \sim N\left(0, \tau^{2}(D-\rho W)^{-1}\right) \tag{4}
\end{align*}
$$

- $y_{(i)}$ represents all locations excluding location i and N_{i} is the total number of neighbors for location i
- ρ represents the degree of dependence between neighbors
- W is a location matrix such that if $W_{i j}$ equals 1 if and only if i and j are direct neighbors and 0 otherwise
- $D=\operatorname{diag}\left(N_{1}, \ldots, N_{n}\right)$ is a diagonal matrix collecting the number of neighbors for each location.

CAR Linear Model

$$
\begin{equation*}
\psi_{k t}=\phi_{k}+\left(\alpha+\delta_{k}\right) \frac{t-\bar{t}}{T} \tag{5}
\end{equation*}
$$

- Assumes a linear trend in the random effect over time with a slope equal to $\frac{\alpha+\delta_{k}}{T}$
- ϕ_{k} and δ_{k} are given CAR priors according to Equation 4

CAR Linear Model

- The other parameters are given standard priors.

$$
\begin{align*}
\phi & \sim N\left(0, \tau_{s}^{2}\left(D-\rho_{s} W\right)^{-1}\right) \tag{6}\\
\delta & \sim N\left(0, \tau_{t}^{2}\left(D-\rho_{t} W\right)^{-1}\right) \tag{7}\\
\tau_{s}^{2}, \tau_{t}^{2} & \sim \operatorname{IG}(1,0.01) \tag{8}\\
\rho_{s}, \rho_{t} & \sim \operatorname{Uniform}(0,1) \tag{9}\\
\beta_{0}, \beta_{1} & \sim N(0,1) \tag{10}
\end{align*}
$$

Computational Technique

- We used the CARBayesST package in R to perform MCMC sampling from the posterior
- We ran separate models for each age group and gender combination for a total of 36 models
- $\boldsymbol{\beta}, \phi_{k}$, and δ_{k} are updated using the Metropolis algorithm with a normal proposal distribution
- $\tau_{S}^{2}, \tau_{T}^{2}$ are updated using conjugacy principles and Gibbs sampling
- ρ_{S}, ρ_{T} are updated using the Metropolis-Hastings algorithm with a truncated normal proposal distribution
- Trace plots and Geweke diagnostics were used to assess convergence

Results

Figure 4: Estimates and 95% credible intervals for β_{0} (intercept) for each age group and gender combination.

Results

Coefficient for Unemployment Rate

Figure 5: Estimates and 95% credible intervals for β_{1} (coefficient for unemployment rate) for each age group and gender combination.

Results

Figure 6: Estimates and 95\% credible intervals for α (country-wide time trend) for each age group and gender combination.

Results

$\alpha+\delta_{k}$ for Females Ages 55-59

Figure 7: Estimates for $\alpha+\delta_{k}$ (total time trend) by county for Females ages 55-59

Results

1000 Times the Fitted Mortality Rates for Females Ages 55-59 in Year 2010

Results

1000 Times the Fitted Mortality Rates for Females Ages 85+ in Year 2010

Model 2

To further understand the spatial relationships of mortality rates, we built a slightly more complicated model to examine state-specific covariate effects.
We again start with a binomial distribution as the top level of the hierarchy.

$$
y_{a k t} \mid \pi_{a k t} \sim \operatorname{Binomial}\left(n_{a k t}, \pi_{a k t}\right)
$$

for each age group a in county k during year t.

Model 2

We can then relate $\pi_{a k t}$ to the desired effects using the logit link function:

$$
\begin{gathered}
\ln \left(\frac{\pi_{a k t}}{1-\pi_{a k t}}\right)=\beta_{0}+\sum_{i=1}^{3} F_{i}\left(x_{k}\right)+\sum_{i=1}^{3} G_{i s}\left(x_{k t}\right)+ \\
\phi_{k}+\delta_{t}+\psi_{a}+\gamma_{a k t}
\end{gathered}
$$

where

- β_{0} is the intercept.
- Each F_{i} and $G_{i s}$ is a nonlinear covariate effect modeled by a Gaussian process with Matérn correlation function.
- $\phi_{k}=u_{k}+v_{k}$, where u_{k} is the structured (CAR) and v_{k} is the unstructured spatial effect.
- δ_{t} is the temporal effect, ψ_{a} is the age group effect, and $\gamma_{a k t}$ is the error term.

Model 2 Computation

We use integrated nested Laplace approximations (INLA) to fit our model making it computationally feasible.

Model Selection

We compared three different models using DIC to make sure the added complication was worthwhile.

Model	DIC (Female)	DIC (Male)
Full Model	$3,817,853$	$4,266,276$
Only Countrywide	$3,818,372$	$4,266,666$
No Covariates	$3,819,075$	$4,266,790$

Table 1: Deviance Information Criterion (DIC) for the three different model versions that were fit to both the male and female data.

Model 2 Overall Female Spatial Effect

Combined Spatial Effect

\square
$[-0.7913$ to -0.1437$)$
$[-0.1437$ to -0.0712$)$
$[-0.0712$ to -0.0177$)$
$[-0.0177$ to 0.0308$)$
$[0.0308$ to 0.0816$)$
$[0.0816$ to 0.1474$)$
$[0.1474$ to 0.4670$]$

Model 2 Overall Male Spatial Effect

Combined Spatial Effect

\square
$[-0.8105$ to -0.1688$)$
$[-0.1688$ to -0.0848$)$
$[-0.0848$ to -0.0267$)$
$[-0.0267$ to 0.0339$)$
$[0.0339$ to 0.0972$)$
$[0.0972$ to 0.1759$)$
$[0.1759$ to 0.7728$]$

Combined Time Effect

Combined Time Effect

Figure 8: Posterior mean and 95% credible interval of the temporal effects $\left(\delta_{t}\right)$. Male values are in blue and female values are in red.

Combined Age Effect

Combined Age Effect

Figure 9: Posterior mean and 95% credible interval of the age group effects $\left(\psi_{t}\right)$. Male values are in blue and female values are in red.

State-specific Unemployment Effect

Figure 10: Posterior mean and 95% credible interval of the unemployment effects $\left(G_{1 s}\left(x_{k t}\right)\right)$ for selected states for the model fit to the female data.

Conclusions and Future Work

- Incorporating spatial correlation into mortality modeling can help us better understand mortality rates
- The spatial dependence parameters helps us draw on information from neighboring counties
- In the future we would like to incorporate additional covariates
- We also want to compare other models and techniques

Using Bayesian Spatiotemporal Modeling to
 Understand Mortality Rates in the United States

Brian Hartman

Joint Work with Robert Richardson, Chris Groendyke, Zoe Gibbs, McKay Christensen, Michael Shull, and Jared Cummings

Brigham Young University

November 2022

